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In  this paper we consider a uniform gas bubble-liquid mixture rising under 
buoyancy. When the gas volume flux is decreased, while keeping bubble size 
constant, a smooth transition is formed between the region of lower concentration by 
volume and the region of initial concentration. This transition travels through the 
mixture as a permanent wave. We start by discussing the mechanisms which make 
possible such a permanent wave. The first is its tendency to steepen a t  the low 
concentration side. At the root of this is the decrease of the uniform rise velocity, 
under buoyancy, with increasing concentration. Associated with the motion of the 
bubbles is the liquid impulse. It is shown that this increases with increasing 
concentration, producing a reactive force on the bubbles which counteracts buoyancy 
and reduces the force available to overcome friction. I n  the transition a balance 
between these two effects occurs. The internal structure following from this balance 
is analysed in detail and it is shown that under certain conditions all its properties 
can be derived from knowledge of the average rise velocities of bubbles in uniform 
mixtures as a function of concentration. 

Measurements on these are reported subsequently, followed by a discussion of our 
experiments on transitions of the kind mentioned in which velocity, thickness etc. of 
the waves have been measured. The data are compared with the results of the 
analysis. Order-of-magnitude agreement is found but there are differences as well, 
requiring further research. 

1. Introduction 
In  a recent paper Batchelor (1988) dealt with the dynamics of waves in fluidized 

beds. With gas as the fluid, as is the case usually, the particles are heavy and the fluid 
light. Inertia effects, known as virtual mass effects, are less important. Batchelor 
(1988) discussed these effects briefly and noted that inertia effects are important in 
bubbly flows where the particles have almost zero density and the fluid has a large 
density. In  this paper we shall deal with permanent waves in bubbly flow and discuss 
in particular the effects of the fluid inertia, represented by the added mass of the 
bubbles. The importance of fluid inertia associated with the motion of the bubbles 
will be made clear in a qualitative way in this introduction. 

Consider, as in figure 1, a uniform suspension of identical bubbles with diameter 
2a of about low3 m and rising under buoyancy. The mean velocity of rising results 
from an equilibrium, on average, between friction and buoyancy. We denote this 
velocity Ues, to be distinguished later from the average velocity U in a wave where 
this average velocity is a function of position along the tube. We shall report 
measurements of U,, in figure 8. These can be represented as, see relation (7.2) below, 

(Ueq-U0) = V(l-ha) ,  (1.1) 
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FIGURE 1 .  A uniform suspension of bubbles in liquid, rising under buoyancy. 

where a is the concentration by volume, V and h are constants and U, is the volume 
flow velocity. In unidirectional flow with liquid velocity U,, U, is defined as 

U, = aU+(l-a)U,.  (1.2) 

Two things are worth noting. First Uep- U, tends, for a+ 0, to a constant, V.  This 
however is not necessarily the velocity with which an isolated bubble rises. We denote 
the latter U,. Experiments show that V is smaller than U,. Secondly, Ueq becomes 
smaller with increasing a. This has important consequences for the dynamics of 
non-uniform phenomena, like the wave represented in figure 2, where the volume 
concentration increases from the downstream value a, to the larger value 
a2 upstream. 

It is well known that wavelets carrying a disturbance of a travel a t  a speed near, 
but slightly less than, Ueq. This means that a disturbance a t  the downstream side 
always travels faster than those more upstream. This leads to steepening of a wave 
of the type depicted in figure 2. Without other processes going on at the same time, 
a permanent wave would be impossible. The mechanisms that work against the 
steepening in fluidized beds are, in part, also present here. In  contrast, however, in 
bubbly flows, the fluid inertia provides effects that are almost absent in fluidized 
beds. Associated with the motion of a bubble is a fluid impulse 

h = 171. (u- U,), (1.3) 

where m, in general a tensor quantity, is the hydrodynamic or added mass, and u- U, 
the bubble velocity with respect to the volume velocity U,. The impulse cannot, as 
is well known, be identified with fluid momentum but its rate of change is a force. The 
reaction force when the bubble changes its velocity is - d/dt{m. (u - U,)}. The main 
ingredients in the force balance are this force, buoyancy and friction. Representing 
the latter by f . ( u -  U,) and buoyancy by pcg"lr, where pd is the liquid density, g is 
the acceleration due to gravity and "lr the volume of a bubble, 

Y = $na3, (1.4) 
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FIQURE 2. A concentration wave in bubbly liquid. The concentration decreases in the wave 
from an upstream value a2 to a downstream value a,. 

this balance is 
d 
dt -ma (u- U,) + f a @ -  u,) = p,g.y .  

The quantity U, (capital letters express averages, lower case letters values associated 
with individual bubbles) is the volume flow and consists of an average volume flow 
of gas aU and, possibly, an average flow of liquid (1 -a) U,. The generalized form of 
(1.2) is 

U, = (1-a) U,+aU. (1.6) 

Since the velocities involved are very small with respect to any velocity of sound, 
both phases can be considered as incompressible. Then, for a particular flow, U, is 
constant. For example, in the uniformly rising suspension in figure 1 U, equals aU,,. 
Looking at figure 2, we see that a t  both extremes there is, on average, equilibrium 
between friction and buoyancy, 

Suppose that m in (1.5) is exactly the same as f ,  which would mean that a change 
of added mass would be accompanied by an equal change in friction coefficient. Then, 
if there is at the downstream side of a transition as in figure 2 equilibrium between 
friction force and buoyancy, the solution h = p C g Y  of (1.5) would remain valid 
throughout the transition. The impulse associated with the motion of a bubble would 
remain the same when the bubble travels through an inhomogeneous zone. If, 
however, m increases more than f ,  with increasing a, and there is near equilibrium, 
the fluid impulse increases, which acts as a stabilizing, downward, force on the 
bubble. On the other hand, if m increases less than f ,  the fluid loses impulse. This 
destabilizes since it acts on the bubbles as an upward force. Indeed, in a study of the 
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behaviour of waves of small amplitude, van Wijngaarden & Biesheuvel (1988) find 
that in the absence of Reynolds stresses, stability is guaranteed if 

While the behaviour of m and f is not known in any general sense, some useful 
insight can be gained for low concentrations. This restriction will be used in the 
following sections to analyse in more detail what has been said here. Apart from the 
way in which the average of h behaves, there are also the fluctuations with respect 
to this average to consider. The fluctuations always provide a stabilizing effect. An 
order-of-magnitude analysis can be given for low concentrations. It is well known 
that ensemble averages, such as indicated with angle brackets in (1 .7) ,  can be 
approximated to an accuracy of order a when only pair interactions are taken into 
account (Batchelor 1972). Since the experiments reported in $ 7  are all a t  low a, we 
shall, after discussion of some aspects of the dynamics of single bubbles, concentrate 
on the interaction between two bubbles. After that, what has been said above will be 
worked out in more detail, both from the experimental and the theoretical point of 
view. 

2. Elements of the dynamics of a single bubble 
In this section we review some particulars of the flow around a single bubble which 

we shall need for the analysis of suspensions. We consider bubbles with radius a of 
the order of 1 mm, rising in water in which the effects of surfactants are negligible. 

When dealing with a suspension this condition is more readily met than with a 
single bubble because in a suspension the available surface-active agents are 
distributed over a large surface, which makes the concentration on each bubble much 
smaller than it would be with an isolated bubble. Because there is a boundary layer 
for the stress but not for the velocity a t  the surface of the bubble, the velocity 
distribution can be described by potential theory with an error of Re-: where Re is 
the Reynolds number defined here for velocity u as 

Re = ua/v  (2.1) 

We = 2p,u2a/u, (2 .2 )  

where v is the kinematic viscosity of the liquid. The shape of the bubble depends on 
the Weber number We defined as 

where u is the coefficient of surface tension. For We - 0 the bubbles are spherical. For 
larger We, up to about 4, they assume an oblate spheroidal shape. The flow about a 
bubble and the associated drag for these conditions have been investigated in two 
important papers by Moore (1963, 1965). He included in his calculations bubbles 
deformed by the non-uniform pressure and normal stresses into oblate spheroids. 
Moore (1965) finds, for the dimensionless drag D, 

Following Moore, later work has included numerical calculations. Recently Ryskin 
& Leal (1984) have done computations confirming Moore’s analytical results for 
We - 0. For higher We they found agreement with Moore’s theory to  be much worse, 
In  (2.3) x is the ratio between the long axis and the short axis of the oblate spheroid. 
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G ( x )  and H ( x )  are functions of this axis ratio, given in tabular and in graphic form 
in Moore (1965). The term involving H ( x )  is true only for steady motion, whereas 
G ( x )  also holds for unsteady motion since it is connected with the potential part of 
the flow which is generated instantaneously. With a bubble rising under buoyancy 
the steady rise velocity is, with x = 1, 

U, = ga2/9v (2.4) 

and the associated Reynolds number is 

Re - a3/v2. 

This shows that for a bubble with a = 1 mm rising in water, v = lo-' m2/s, 
Re - lo3, which is large enough to make terms with Re-: negligible. Comparison with 
(2.2) shows that such bubbles are already slightly deformed and a more accurate form 
of (2.4) is 

Figure 3, shows a rapid increase of G ( x )  with x. Even for bubbles as small as those 
described here there is a considerable discrepancy between (2.4) and (2.5)T For an 
isolated bubble rising under gravity the drag force has the direction of the velocity 
and f i n  (1.5) is a scalar quantity, f, say. From (2.3) we infer that this has the form 

U ,  = ga2/9vG(X). (2.5) 

f = 1 2 ~ p a G ( ~ ) .  (2.6) 

t When measurements of the velocity of rise of single bubbles are interpreted with a view of the 
applicability of potential flow, this should be borne in mind. 
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Also, the added mass occurring in (1.5) as m is a scalar quantity for a rising isolated 
bubble of oblate spheroidal shape. 

For a sphere the added mass has the well-known value 

ma = 3cpa3. ( 2 . 7 ~ )  

For oblate spheroids the added mass has been given in Milne Thomson (1968, p. 501) 
as 

m(x) = moQ(x), ( 2 . 7 b )  

where 

Q ( x )  is also a function rapidly varying with x as shown in figure 3. The ratio of m and 
fplays a crucial role in the present investigation. From (1.5) and (2.6)-(2.8) it follows 
that a bubble released with velocity U, a t  time t = 0 acquires in the course of time 
a velocity 

u = U,+(U,-U,)exp(-t/~), (2.9) 

Urn being given by (2 .5)  and with 

(2.10) 

7 has the dimension of time and we shall call it the relaxation time because i t  takes 
a multiple of 7 seconds to bring the initial velocity U, down to U,. The functions G(2) 
and Q(x)  together with their ratio Q/G, are given in figure 3. 

3. The dynamics of a pair of bubbles 
The motion of a bubble in a suspension differs considerably from that of an isolated 

bubble. Even a t  small Weber number, where an individual bubble rises along a 
rectilinear path, bubbles move in a suspension in an erratic way. This is due to the 
hydrodynamic interaction with other bubbles. The sum of the motion of individual 
bubbles sets up in the fluid a pressure and stress distribution. This exerts a force on 
an additional bubble placed in the fluid. This in turn starts to move in such a way 
that the sum of the forces due to this stress distribution is balanced by the forces due 
to its own motion and, in addition, buoyancy. Since neighbours change their position 
continuously the motion of a bubble has a stochastical character. This suggests the 
use of statistical mechanics, as in other areas of flow of heterogeneous media. As 
emphasized by Batchelor in his general lecture at Grenoble in 1988 (Batchelor 1989) 
exact calculations are not likely to go beyond two-particle interactions. For use later 
on in this paper, we discuss here some aspects of the dynamics of a pair of bubbles. 

We refer to  figure 4, in which a t  location x there is a pair of bubbles a t  mutual 
distance 2R and oriented at an arbitrary angle with respect to g. When the bubbles 
are accelerated, for example by buoyancy, the resulting motion of the centre of mass 
can be decomposed in two independent directions, along the line of centres and 
normal to it. Owing to the presence of another bubble, the added mass of the pair is 
different in both cases. In  other words, i t  is a tensor quantity. Denoting unit vectors 
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FIQURE 4. A pair of bubbles at distance 2R, the centre of mass being at  location x. 

along and normal to the line of centres by e l ,  and e2 respectively, we have from van 
Wijngaarden (1976), for the added mass of each of two bubbles in a pair : 

where m, is given by (2.7a). These results were obtained by first deriving an 
expression for the potential due to the motion of two spheres and subsequent 
calculation of the inertia forces on a bubble, requiring the sum to be zero. The flow 
potential expressed in coordinates centred in one of the two bubbles can be 
interpreted as being made up from contributions by a dipole, a quadrupole and 
higher multipoles. If truncated after the dipole, only the terms in ( U / R ) ~  remain. The 
same potential can be used to calculate the drag force. This was done by Kok (1988) 
who extended Moore’s (1963) analysis to bubbly suspensions. For a system of bubbles 
at generalized positions qc the dissipation function can be formulated. 

Using Lagrange’s principle, extended with this dissipation function, the equation 
of motion for each bubble can be derived. We denote by 2 0  the drag force on a pair 
of bubbles belonging to the motion, with velocity 1 of the centre of mass. In the 
directions el and e, Kok (1988, 1989) finds 

D - e ,  = fo 2- el { 1 - 2 (51 + 3 (&r + 11 (&I + . . .}, 

D -e2 = f, 1. e,  { 1 + (&r +a 3 a  ( zr + 1 1 a  ( zI + . . .}. 
(3.3) 

(3.4) 

In  these relations f, is the value off in (2.6) for 

terms of order ( u / ~ R ) ~  we can write 

= 1. 
Comparing (3.1) with (3.3) and (3.2) with (3.4) we see that, when we only include 

f =fa{/+ F(a/%)), (3.5) 

m = m0{/+$F(a/2R)}, (3.6) 

where F has components as given in the curly brackets in (3.3) and (3.4), up to terms 
of order ( U / R ) ~ .  In  (3.5) and (3.6) I is the unit tensor. These results are not accidental. 
A fictitious body with added-mass coefficients as given in the right-hand sides of (3.1) 



118 L.  van Wijngaarden and C. Kapteyn 

and (3.2) has the same virtual inertia as a spherical bubble when accelerated in the 
presence of another one a t  distance 2R. There is a relation between the impulse h of 
a body and the dipole strength of a body moving with velocity 1. This relation is (see 

(3.7) 
e.g. Lighthill 1986, p. 136) 

h + p y x  = 4 ~ p ,  d, 

where d is the dipole strength, that is, the potential of the dipole centred a t  r = 0 is 
o, = -d.r/r3. 
' Writing the added mass as 

we have from (3.7) and (3.8) 
m = m,( /+L) ,  

d = & 3 2 * ( / + i L ) .  

The velocity induced by this dipole in a point a t  distance r = 2R is 

-- d d'2R2R. 

Take for example the aligned case in which x is in the direction of R. Using (3.9) for 
d and (3.1) for the appropriate component of 1, we find for the induced velocity uind 
a t  distance 2R, in the direction A?, 

( 2 R ) 3 + 3 0 5  

(3.10) 

Next we consider the dissipation. An isolated sphere, moving through the liquid 

@J = 127cpax.x. (3.1 1)  

When there is another sphere in the neighbourhood and only dipoles are taken into 
account, we may replace the velocity in (3.1 1)  by x+u,,,, where uind is the velocity 
induced by this neighbour in the centre of the considered sphere. Taking the aligned 
case, the dissipation function associated with the motion of the pair is twice the 

@ J =  127cpax2(1-y) (3.12) 

(the induced velocity is in the direction of i). Since the expression in brackets in 
(3.12) is independent of 8, the drag force ;a@J/ax becomes 1 2 ~ p a k ( l - ~ ~ ~ ~ / k ) ~ .  

Expanding this for small uind/i and using (3.10) gives the first line of (3.3) up to 
terms of order 

with velocity A? causes a dissipation 

quantity 2 

and gives, if we take only the terms in uind/k., 

12npai( 1 +$(L .el) .el), 

giving again the result expressed by (3.5) and (3.6) in the general case. This result 
ceases to be valid when the bubbles take, for example, the oblate spheroidal shape 
discussed in $2. For a bubble of such a shape the added mass is already a tensor in 
the absence of another bubble, M, say. The relation between components of L and 
components of F is therefore different in different directions. Take the position in 
which the line of centres is perpendicular to g. When the centre of mass of the pair 
is accelerated in the direction of the short principal axis the ratio between the 
appropriate components of L and F is, within the same approximation as used 
in deriving (3.5) and (3.6), $ ( l + p L T / M 2 , ) .  This is shown in Appendix A. Here 
M,, = (M.e , ) .e , .  Similarly the relevant factor is $(l +pdV/Mll) when the centre 
mass of mass is accelerated in the direction of the long principal axis, see Appendix 
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A. M,, is larger than m, by the factor &(x) in (2.8), whereas M I ,  is smaller by a similar 
factor given by Lamb (1932, $373). 

4. Average equations for dilute suspensions 
We return to the wave phenomenon as sketched in figure 2. The macroscopic 

measurable quantities such as void fraction a and velocity U are averages, most 
conveniently ensemble averages. The ensemble is made up of all possible 
configurations of N ,  say, bubbles in a volume large with respect to the inter-bubble 
distance but small with respect to a macroscopic lengthscale such as, for example, the 
transition thickness in figure 2. We shall indicate such averages with ( ) : 

( u -  U,)  = ( U -  U,). (4.1) 

I n  this relation U and u are taken relative to the volume flow U, as defined in (1.6). 
In  a frame moving with U, the flow is in general unsteady. In  the case of a permanent 
wave, as in figure 2, there are advantages in considering velocities in a frame moving 
with the wave velocity Us. I n  that frame the motion is steady and we have, when z 
runs along the wave, 

d 
dz -a(U- Us)  = 0. (4.2) 

In  the wave of figure 2 there is equilbrium a t  both ends and therefore 

When a2 > ax, aU increases with a and, since the total volume flow expressed by U, 
remains constant, (1.6) shows that there is a compensating liquid flow downward. It 
is readily verified that with equilibrium everywhere, that is U = Ueq, (4.2) cannot be 
satisfied and that is where the inertia comes in. Since this includes averages as 
well as fluctuating quantities we have to go to the particle level. As noted in $1, for 
dilute suspensions this can be done in terms of interactions between two bubbles. 
Therefore we give the following discussion in terms of pair interaction. Of course, 
for higher concentrations multiple interactions have to be considered. This is done 
in a study by Biesheuvel &, Gorissen (1990). Such formulations are more general 
but a t  the same time much more complicated. Referring to figure 4 we shall define 
P ( x -  R ,  x+ R )  d3x d3R as the probability of finding one bubble in x- R and another 
one in x+  R. The quantity P is a probability density, normalized such that, the 
bubbles being identical, 

~ ~ ( x - R , x + R ) d 3 x d 3 R  = P(x,x+2R)d3xd3R = 1. 
2 

The probability density P obeys a conservation equation 

ap 
-+V,.(uP)+V,.(P&) at = 0, (4.5) 

where u is, as before, the velocity of the centre of mass of the pair. The relation with 
the number density n ( x )  can be found by noting that 

P(x ,  x + 2R) = P(x/x + 2R) P(x + R),  (4.6) 
where P(x /x+2R)  is the conditional probability density, that is the probability 

5 FLM 212 
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density of finding a bubble at x, given that there is one in x + 2R. If the one-particle 
distribution density, P(x) or P(x+2R) ,  is the same for all R and denoted with the 
number density n(x) 

we have, since integration of P(x ,R)d3Rd3x over all R must give n(x)d3x, 

P(x+2R)  = n(x),  (4.7) 

n(x)  = P(x, R )  d3R = P(x/x + 2R) P(x + 2R) d3R.  (4.81 s s 
s 

The average U of u ( x ,  R )  now is defined in a similar way : 

nU = P(x, x + 2R) U(X, R )  d3R. (4.9) 

Thus, integration of the terms in (4.5) over R gives 

(4.10) 
an 
-+V; (Un)  = 0. 
at 

aO1 
at 

Because all bubbles have the same radius a, we obtain, by multiplying this with 

-+Vv,.(aU) = 0. (4.11) 

This, of course, expresses the conservation of volume flow, which in a frame moving 
with the wave velocity Us gives immediately (4.2). Like u other quantities have 
averages defined in such a way, for example the impulse h of a bubble in the presence 
of another one a t  x + 2 R .  If we consider $ h(x, x + 2 R )  P ( x ,  x + 2 R )  d3R this can be 
written with the use of (4.6) as 

j 6 ( x , x + 2 R ) P ( x / x + 2 R ) P ( x + 2 R ) d 3 R  = n h(x ,x+2R)P(x+2R/x)d3R.  (4.12) 

The integral is precisely the ensemble average accurate in 01, provided that the 
quantity h falls off rapidly enough with increasing R. For example, if we put in (4.12) 
a constant c instead of h the integral $cP(x+2R/x)d3R will not exist unless P 
behaves very specially. The ensemble average of c is of course just c, so the reduction 
is not allowed here, but the ensemble average must be used. In  the following we shall 
be able to deduce the value of averages from experimental results. In  those cases 
where an actual calculation is made we shall take care that integrals like in (4.12) 
converge. 

We turn our attention now to the dynamic equation for the velocity u- U, of the 
centre of mass of a pair, relatrive to the volume velocity U,. This equation is obtained 
from the equations of motion for the separate bubbles. From addition of these the 
required equation follows. Incidentally, subtraction gives the equation for the relative 
motion which is needed when P itself is sought. The pertinent equation for the centre 
of mass is given in Biesheuvel & van Wijngaarden (1982) and Kok (1988): 

the volume -Y- of a bubble, 

s 

(4.13) 

The quantities occurring in this equation have all been discussed in previous sections. 
In  the first term on the left-hand side we see the fluid impulse h defined in (1.3). 
Formally (4.13) is the same as (1.5) but in (4.13) it is understood that in x, m and 
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also f depend only on the presence of another bubble in x + 2 R .  We have added x in 
the argument as a reminder that the bubbles need not be spherical but are deformed. 
During the erratic motion of a bubble its shape will change continuously. To take the 
momentary shape into account in (4.13) would be too complicated. Therefore, we 
shall consider x to consist of an average value based on the average rising speed and 
disregard the fluctuations of the shape. We replace f by f(/+ F )  and rn by m(/+ L ) ,  
as in (3.5) and (3.8) for the spherical bubble, and use (2 .5) ,  (2.6), (2.7) and (2.10) to 

(4.14) 
transform (4.13) to 

In the uniformly rising suspension of figure 1,  P depends neither on time nor on x and 
(4.5) reduces for the distribution Po to 

v,. (Pod)  = 0. (4.15) 

For a uniform suspension all quantities in (4.14) depend only on R and we can 
write d/dt as R.d/dR. We multiply with Po and integrate over R.  Using (4.15), the 
first term on the left-hand side of (4.14) gives 

i V R s  [Po d{( /+ f ) - (u - U,)}] d3R. 

For fairly general behaviour of the trajectories described by pairs in R-space this 
expression is zero, for example if the trajectories are closed, but also when at  the 
boundaries R is zero. Taking therefore the above expression to be zero, the remaining 
terms in (4.14) give, upon averaging, 

d 
dt 

7- [ { /+L} . {u-  Uo}]+{ /+F) . {u-  U,} = Urn. 

({/+6*{u-Uo})eq = Urn, (4.16) 

where the subscript eq is a reminder that the situation is one in which there is, on 
average, equilibrium between buoyancy and friction. The same result follows, of 
course, from averaging (4.14) over a long time, following a pair, and using the 
equivalence between time and ensemble averaging. The relation (4.16) can be written 
as 

(4.17) 

This says that, with respect to U,,, the average rising velocity is the velocity with 
which an isolated bubble would rise reduced by a term which stems from the average 
excess resistance over that of an isolated bubble. 

Next we turn to the case in which the suspension is not uniform, for example owing 
to the passage of a wave. In particular we shall consider waves of permanent form 
travelling with velocity Us. In a frame z = x - Us t moving with this velocity the flow 
is steady and we have 

V,.{(U- U,)P}+V, . (Pd)  = 0. (4.18) 

Looking at  equation (4.14) for the motion of the centre of mass of a pair, u also 
depends here only on R. Hence dldt can be written as R-dldR.  Doing this and 
multiplying all terms of (4.14) with P,  integration over R gives 

7 Pk-VR[{/+L(R)}*{~- Uo}]d3R+ { / + f ) * { ~ -  U0}(P-P0)d3R = 0, (4.19) s s 
5-2 
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where use has been made of (4.16). The first term on the left-hand side of (4.19) can 
be worked out, with use of (4.18), as 

+T [ { /+L} . {u-  Uo}]V,.{P(u- Us)}d3R. (4.20) 

By t h e  argument which has been used in averaging, in the equilibrium case, the first 
term in (4.14), we assume that the contribution by the first term on the right-hand 
side of (4.20) vanishes. The second term can with help of (1.3) and (3.8), which define 
the impulse h, and by using that only P depends on z, which enables V, to be taken 
outside the integral, be written as 

TV,. sL (u - Us) P d3R. 

J 

(4.21) 
m0 

Thc second term on the left-hand side of (4.19) is now written as 

(/+F(R)}-{u- Uo>(P-Po)d3R = nU-nU,,+ F(R).{u- Uo> (P-P0)d3R.  s I (4.22) 

Taking the results expressed by (4.21) and (4.22) together gives 

n(U- U,,)+TV,* -((u-Us)Pd3R+ f ( R ) . { u -  U0}(P-P0)d3R = 0, (4.23) s: 1 
nU = nu,, - F(R) - (u- U,) (P-Po) d3R -7V,- - (u - Us) P d3R. (4.24) 

This result can be interpreted in fluid-mechanical terms in the following way. If we 
divide by n and multiply with 127cpuG(~), (4.24) becomes an average force balance, 
Clearly, when P = Po and the suspension is spatially uniform U = Ueg and there is a 
balance between buoyancy and friction. In  the presence of a gradient, the average 
frictional force 127cpuUG(~) differs from that in equilibrium for two reasons. The first, 
is that the probability density distribution is different, P is different from Po. This 
makes the part of the frictional force that depends on the presence of others, i.e. 
127cpuaG(~) F (R) .  (u- Uo), different from the equilibrium value. The second reason is 
the gradient of the fluid impulse, expressed by the second term on the left-hand side 
of (4.23). When the fluid impulse increases, the reaction on the bubbles is a downward 
force reducing the force available to overcome friction. I n  closing this section, it 
should be emphasized that at higher concentrations additional forces may be of 
importance, such as those due to multiple interactions. 

or s KO 

5. Waves of permanent form 
For waves of permanent form, in which we are primarily interested here, we can 

simplify (4.23) further. For this we return to  the conservation equation (4.18) for P. 
Since in V; only the coordinate z along a wave, such as in figure 2, is concerned, 

a 
-(u-Us)P+V,.(P&) aZ = 0. (5.1) 
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The lengthscale for the variation with z is the thickness, d say, of the wave. In  R-  
space the bubble radius a is the natural scale. We introduce dimensionless variables 

6 =  z l d ;  q =  R l a  (5.2) 

in (5.1) to give 
a ap 
-(u-Us)-+V,.(Y&) = 0. 
d ac 

As we shall see when discussing experimental results, the width of the transition is 
typically of the order of a couple of cm with bubbles of 1 mm radius so that we can 

a / d = e 4  1 ,  (5 .3)  

which allows to write the above equation as 
ap 

ac V,.(PR)+s(u-UU,)-  = 0. (5.4) 

This suggests, as in the Enskog method for the solution of the Boltzmann equation 
in the theory of dilute gases (Chapman & Cowling 1939, chap. 7),  expanding the 
probability density P in a series of ascending powers of e 

P=Yo+eP1+ .... (5.5) 

Inserting (5.3) and (5.5) into (5.4) gives, upon collection of terms of like order in E, 

the relation (4.15) for Po, and for the first correction PI 

a 
V,.(P1R) = --{(u-us)Po}. ac 

This equation, together with an additional condition, determines Pl. The additional 
condition is the following. The integration of P d3R d3x over all values of R must give 
n(x) d3x. Requiring now that 

k o d 3 R d 3 x  = n(x) d3x, 

k 1 d 3 R  = 0. 

This condition and the differential equation for Pl are sufficient to determine PI, 
However, in the present case we do not need to know Pl explicitly. Taking V; equal 
to a/& in (4.24) also and introducing the dimensionless variables, defined in (5 .2) ,  in 
(4.24) gives 

the condition on PI is 

The magnitude of the parameter a/U,r, preceding the final term in (5.7), can be 
deduced from the definitions (2.5) and (2.10) of U ,  and 7 respectively, 

For water, v = 
whence we neglect the second term with respect to the first in the square brackets on 
the right-hand side of (5.7). 

m2/s, and bubbles of about m radius, this is of order 
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The quantity a/U, T can be interpreted in various ways. One way is to see it as the 
ratio between the interaction time a/U,  and the relaxation time 7.  Another is to 
regard it as a PBclet number with VZ, T as diffusion coefficient. The smallness of this 
PBclet number means that the balance expressed in (5.7) is mainly maintained by the 
impulse-flux term. Restoring physical coordinates with the help of (5.2) we have, 
after this simplification, 

n U  = nUe,-rVz- - (u-  Us)P,d3R. (5.9) E0 

1 
This contains under the integral sign the product of the fluctuating impulse h, defined 
by (1.4) and (3.8), and the fluctuating velocity with respect to Us. 

We write 

n(h(u- Us ) )  = n ( h ) ( u - U s ) +  (h-(h))(u-U)P,d3R. (5.10) 

The average of h can be determined as follows. Using (3.8) 

( h ) / m ,  = ( ( /+L) . (u-U,) )  = ( ( /+F) . (u-UO))+( (L-F) . (u-  U,)} .  

Since in the pertinent term in (5.7) Po is involved we may use (4.16) for the first term 
on the right-hand side, resulting in 

( h ) / m ,  = U,+((L-F)*(u-U,,)). (5.11) 

Next we use the relation t - F = iF found in $3 to be valid for pairs of spheres to 
order ( u / R ) ~ .  As explained at the end of $3, for oblate spheroidal bubbles the ratio 
between components of L and F is not but different in different directions, 
sometimes larger, sometimes smaller. In  the absence of further knowledge of Po we 
shall assume here that on average we may use the result for spheres. Together with 
(4.16) this gives for the right-hand side of (5.11) 

<h)/m, = :U,-;(Ueq- U,). (5.12) 

Inserting (5.10) and (5.12) in (5.9), and using the conservation equation (4.2) results 
in s d 

dz n U  = nu,, -%r( U,, - Us) - (U,  - U,,) -TV; (h-  (h) ) /m, (u-  V,,) Po d3R. 

(5.13) 

It is interesting to note that the sign of the average impulse-flux gradient, the second 
term on the right-hand side of (5.13), depends crucially on the relation between L and 
F. Our experiments as well as those by others show that Ueq - U, is less than U,. This 
means that in the distribution Po the configuration of a pair with the line of centres 
normal to g has higher probability than the aligned configuration, because in the 
latter position the resistance is less than the pair would experience when a t  infinite 
distance. In the more probable configuration with the line of centres at right angles 
to the direction of g, the excess impulse is, as we have seen in $3,  larger than the 
excess resistance. This results in a stabilizing, downward force on the bubbles, as 
explained earlier in this paper and confirmed here. A t  higher concentrations when 
multiple interactions become important the results of $ 3 are not accurate enough. It 
is an interesting subject for future research to investigate whether a t  higher 
concentrations the average impulse gradient is negative, which would contribute to 
the experimentally observed instabilities of voidage waves at high concentrations. 

Next we turn to the contribution by the fluctuations to the third term on the right- 
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hand side of (5.13). With use of (3.8), the average of (h - (h ) ) /m , (u -  U,,) can be 
written as the average of 

{ ( l + L ) .  (u- U,) - ( U -  U,) - ( L  - (u - Uo))eq> {u- &,I. 

<(u- U )  (u- U)> + ( L .  (u- Uo) (u- Ueq)>* 

This average is equal to 

It is more convenient to relate u- U, to U,  since at  large separation (u- U,) tends 
to U,. Hence we write the above average as 

( (u - uo - Urn) (u - Uo - urn)) - { Urn - ( ueq - uo)> { Urn - ( ueq - Uo)> 

+(L~(~-U,)(~-U,-U,)>+(L~(~-U,)(U,-U,,+U,)). (5.14) 

Using (4.17) and the relation L = $F the last term can be written as 

3 - ( Ueq - Uo)> {Urn - ( ueq - uo)) (5.15) 

The last but one term is reduced to 

(L.(u-u,)(u-u,-u,)) = ( L . ( u - U , - U r n ) ( u - U 0 - U r n ) )  

+ ( L .  U,(U- U,- U, ) ) .  (5.16) 

Inserting (5.15) and (5.16) into (5.14) and using this for evaluating the average of 
( h - ( h ) )  (u- U,,) in (5.13) we finally obtain from (5.13) 

d 
dz 

n U  = nu,, - $m( U,, - Us) - (U,, - U,,) -+n7VZ. { U,  - (U,, - U,)] 

{ - ( Uea- ~ o ) > - ~ ~ ~ '  l{(/+ L )  ' (u- uo- 

(u- U,- Urn)Il',d3R--7Vz-~{L. U,(u- U,- Urn)>P0d3R. (5.17) 

The terms with the integrals in (5.17) cannot be inferred from experimentally 
obtained values for U,, - U,. They are however, in the applications that we shall deal 
with, considerably smaller than the other terms. The latter can be evaluated as 
follows. From (4.3) and (1.1) we have 

U,,-U, = hV{a,+a,-a}, (5.18) 

where we recall that a1 and a2 are the downstream and upstream values of a,  
respectively. The x-component of the third-term on the right-hand side of (5.17) 

(5.19) 
becomes 

-+n7-{U,- V(1 -ha)}2 = -n7hV-((U,-V+hVa). 

To estimate the contribution by the integrals in (5.17) we observe that inspection of 

(/+ L )  - (u - U,) --f const. 
(4.14) shows that for 7 - t  00 

Taking the constant equal to U,, that is the value that u - U ,  approaches for 
R--f 00, we have 

u- U,- U ,  - - L .  U ,  for 7 9 1,  (5.20) 

Similarly u- U,- U ,  - - F -  U ,  for 7 < 1. (5.21) 

Since the elements of L and F decrease like ( u / R ) ~  wo may apply (4.12) and the 
discussion it follows to both integrals in (5.17), for the particular case of h. We take 

d d a  
dz dz 
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P , , (x /x+2R)  to be zero when R < a and n for R > a. Then, using (4.12) we find for 
the sum of the ternis with integrals in (5.17), when (5.20) is used, 

"{ --7n2Vm/;(&r47rR2dR} = - 0 . 0 0 l n ~ ~ ~ -  d a  
dz dz 

(5.22) 

and, when (5.21) is used, 

(5.23) 
[ - 7n2um /{ (&r - (&y} 4nR2 dR] = 0.006n7Vx - da . 

dz dz 

Since in our experiments a is of the order of 10% i t  seems that, concerning the 
estimates in (5 .22)  and (5.23), the contributions from the other terms, of which one 
is given in (5.19) and the other follows from ( 1 . 1 )  and (5.18), are much larger. Then, 
neglecting the terms with the integrals in (5.17), introducing (5.18) and (5.19) in 
(5.17) gives upon division by n 

u,, - u = (5.24) 
dz 

An equation for a is obtained by writing the lefbhand side of (5.24) as 
(U,, - Us)  + (Us - U )  and using (5.18) for the former term, while using for the latter 
the relation, following from ( l . l ) ,  (4 .2)  and (4.3), 

4u- Us) - WU- US)}1 - -- AV 0-us = - 
a a a 

With this we obtain as final result the equation 

(a-a1)(a2-a)  = +AV- (5.25) 
dz 

The right-hand side of (5.24) may be interpreted as a diffusional flux with diffusion 

9 = +r(AV)2 (5.26) 
AV 

coefficient 

or, with 

9 = !p(hV)*. 

Solution of (5.25) gives, allowing for a constant, zo, 

(5.27) 

(5.28) 

It follows that a+a, for z+- 00 and a+", for z+ 00. In these far regions of the 

(5.30) 

(5.31) 

Since a, > a, we see that (5.29) predicts a steeper transition at  the downstream side, 
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- - Outlet controlling 
zero flux flow 

Hypodermic needle 

Air flow 

FIGURE 5. A sketch of the experimental set-up. 

where a -+ al, than a t  the upstream side where a --f a2. Further it can be seen that the 
thickness of the transition, d ,  is a multiple of 

1. a2-a1 

9 1 + a1/2q 1 + 4 2 4  9 a, + a1 + (a; + a 3 / 2 q  -4 hV a2/a1-1 + l-aa,/a, }=={ (5 .32)  

6. Description of the experiments 
In order to verify the analysis given in the preceding sections, experiments have 

been carried out on a water/air-bubble mixture in a vertical duct. Essential 
conditions on the two-phase mixture are a small variation in bubble size and not too 
large bubbles, otherwise the bubble deformation becomes too large for the theory to 
be valid. Basically the experimental set-up is an open water loop consisting of two 
horizontal and two vertical ducts. A sketch is given in figure 5 .  The vertical mixture 
duct has a circular cross-section of 8 em internal diameter. At the bottom of the 
mixture duct a bubble generator is mounted, which injects the air bubbles into the 
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1 Air 

FIGURE 6. A hypodermic needle and the water channel outside it t o  modify the bubble size. 

system, while an open tank at the top of the set-up enables the air bubbles to escape. 
Special attention has been paid to the bubble production. The air is injected through 
150 hypodermic needles of 0.5 mm internal diameter. These needles can operate in 
two modes. At low volume fluxes of air a needle produces air bubbles one by one, 
while a t  high air flow rates an air jet emerges from the needle, which breaks up into 
bubbles above the needle tip. The latter situation is less suitable, as the variation in 
the bubble diameter is large. To enlarge the region in which the first mode occurs and 
a t  thc same time to enable the adjustment of the bubble dimensions, each needle is 
positioned in a narrow water channel. When the water flow through the channel is 
increased then, owing to the larger forces between water flow and growing bubbles, 
smaller bubbles are released. A more detailed picture of this bubble-producing device 
is given in figure 6. The production of bubbles is accompanied by a flow of water. The 
net water flow upward in the duct has to be controlled independently. To achieve a 
prescribed water flow (zero in the experiments to be described) there is an outlet 
enabling a prescribed net volume flow of water. 

Void fraction can be measured with one of the following devices: ( 1 )  a Betz 
pressure difference meter (volume- and time-averaged data) ; ( 2 )  an electric 
conductance system with electrodes mounted flush with the wall (volume-averaged 
data) ; (3) a measurement system based on gamma photon absorption (local- and 
volume-averaged data). Methods 2 and 3 are also suited for measuring the 
propagation speed of void-fraction disturbance in the axial direction, when the time 
delay between the passage past two measurement positions at a certain distance 
from each other is determined. 

The volume of the bubbles produced is obtained by leading individual bubbles out 
of the two-phase mixture, stretching them into a cylindrical shape, the dimensions 
of which can be derived after passage past two optical sensors. Mass fluxes of water 
and air are measured with rotameters. 

Since measurements to be reported in $7  have all been done with methods 1 and 
2, we give hereafter some details of 2, the operation of Betz pressure difference meters 
being sufficiently well known. The two-phase mixture between two electrodes 
mounted flush with the duct wall forms one of the four electric resistances of a 
Wheatstone bridge. The dimension of the electrodes in the axial direction is 15 mm, 
which is still sufficiently large with respect to the bubble diameter to prevent too 
much influence of one single bubble on the imbalance of the bridge. To reduce the 
influence of the mixture outside the region between the electrodes, ‘guard electrodes ’ 
have been mounted above and below the sensor electrodes ’, which are all operated 
at the same vo1tage.t A picture of the layout of the electrodes is shown in figure 7 .  

t For the idea of introducing these extra ‘guard electrodes’ we are indebted t o  Dr ,J. Bour6 of 
the Centre d’Etudes Nucleaires de Grenoble. 
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I 

Guard 
electrodes 

Sensor 
electrodes 

Guard 
. electrodes 

(Mixture flow) 

t 

AB: 5 V a.c.; 5 kHz B 

FIGURE 7. An outline of the electric conductance system. 

A calibration of this device was carried out, in which the readout of the bridge was 
compared with the void fraction obtained from the Betz pressure difference meter for 
the case of uniform mixture conditions in stagnant water. This calibration shows 
that a nearly linear relation exists between the bridge imbalance and the volume- 
averaged void fraction under the above-mentioned conditions. For slow variations of 
a in the axial direction this calibration can be used. To inspect the influence of the 
finite width of the electrodes, we carried out the following experiment. We took, 
instead of a bubbly flow, a packed bed of finite length consisting of 5 %  volume 
concentration of polystyrene spheres with a diameter of 3 mm. The transition from 
void to the packed bed was registered by the electrodes as being of finite width of 
about 1 cm. The concentration behaves as 

a - $Aa{ 1 + tanh (sx)), s = 115 m-l. (6.1) 

a - +Aa{l+  tanh (Ax)} ,  h < s. (6.2) 

+( A/s)2/cosh2 (Ax) ,  (6.3) 

Next we investigated the effect of this on an input 

It appears (see Appendix B) that the relative error is smaller than 

which means 8% in the worst case. Hence we have used the calibration without 
further correction to determine the a-profile in our measured waves. 

For completeness we should also briefly describe method 3, gamma absorption, 
even though results from it  are not used in $7 .  An 241Am source emits a beam of 
60 keV photons through the mixture duct. The photon intensity at the other side of 
the duct is counted by an NaI scintillator/photomuItiplier. The number of photons 
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absorbed is related to the void fraction and after calibration this absorption can be 
used to measure local or average (over a cross-section) void fraction. The number of 
photons detected by the scintillator during the passage of a void-fraction transition 
is rather low, owing to the admitted source strength. Therefore this method has been 
mainly used for measurements under steady conditions. 

The mean bubble rise velocity in a stationary two-phase mixture can be deduced 
from U,, = Qg/aAp,, where Qg is the air mass flow, A is the cross-section of the duct 
and pg is the air density. At the same time the equivalent mean radius of the air 
bubbles was obtained from the bubble volume measurements. A summation of 25 
registrations of void transitions has been made to exclude stochastical variations in 
the rcgistered profile, To achieve this the experiments were controlled by two 
coupled computers. One of these, a PDP-11, equipped with analog/digital and 
counting facilities, counted time intervals, needed for the two-phase mixture in the 
duct to become stable at the initial void fraction a,, and also controlled the switching 
of the air mass flow to the value corresponding with a,. The other computer, an 
Olivetti M24 controlled u digital memory oscilloscope, used for the registration of the 
electrode signals. A 25 Hz low-pass filter was applied in order to suppress high- 
frequency fluctuations, which could disturb the triggering of the signal. This trigger 
pulse initializes the measurement on the oscilloscope in such a way that data of the 
complete wave are registered. Two pairs of electrodes, a t  a distance of 20 ern were 
used to determine both the shape and the speed of the waves. Two points have to be 
taken into account carefully: (i) The position of the trigger point has to be chosen 
in a region of large void-fraction gradient to  diminish effects of small variations in 
the void-fraction registration on the mean-shock profile. We took the point 
a = $(a,+a,). (ii) The distance between the first electrode pair (trigger source) 
and the other detectors should not be too large to avoid effects of small velocity 
differences among succeeding transitions. It appeared that 20 cm is a good choice. 

7. Experimental results 
The liquid used in the expcriments is filtrated tap water. Bubbles have an effective 

radius of 1.4 mm with a spread of 0.25 mm. For a bubble with an effective diameter 
of 3 mm Clift, Grace & Weber (1978) report a velocity of rise of 28 cm/s in pure water 
and 18 cm/s in contaminated water. We have measured 

which is very close indeed to the value in pure water. Our experiments on uniformly 
rising suspensions give 

U,, - U, 7 0.2231 1 - 1.78a) (0.02 < < 0.14). (7.2) 

A representation of experimental points together with (7.2) is shown in figure 8. The 
experimental points are, down to concentrations of about 2 YO, very close to the line 
given by (7.2). In the interval between a = 0 and a - 0.02 there is scatter and rise 
velocities are difficult to obtain. This explains why there is a difference between U ,  
in (7 .1)  and the quantity Vin (7.2) (see ( i . l ) ) ,  which therefore should be considered 
as an empirical quantity rather than the rise velocity for a+O. Since in our 
experiments to be reported presently no concentrations below 2 YO occur we shall use 
(7.2) in our calculations. In  the literature, while data for rise velocities of bubbly 
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suspensions are given, usually there is no specification of bubble size and spread of 
bubble size. Hetsroni (1982, pp. 2-87) reports 

Ue,-Uo = U , ( l - c ~ ) ~  (1.75 < ?Z < 2 , 2 ) .  (7.3) 

(7.4) 

Bourt! (1988) reports for the suspensions that he and his coworkers have studied 

Ueq - U,, = 0.22( 1 - 2 .254  + O(a2) .  

Both (7.3) and (7.4) are not very far from our result (7.2), the value 0.22 for V 
corresponds with what Rourt! (1988) finds, whereas the index regime in (7.3) 
comprises, for n = 1.78 and to order a, our result. We consider the latter as more 
precise since the bubbles in our experiments are of known size with small spread. 

An important quantity is the relaxation time r.  This has been calculated as 
follows. For bubble radius a = 1.5 x lop3 m and U ,  as given in (7.1) the Weber 
number (defined in (2.2)) is 3.1. From Moore (1965) we find x = 2.4 and accordingly, 
from figure 3, Q / G  = 0.7. Hence r is (see (2.10)) 

(7.5) 

In the actual experiment the average value of x, estimated from photographs of the 
bubbly mixture, is less, about 1.8. This, apparently, is caused by the interactions. 

We have measured transitions a2+a1 for a number of values of a1 and a2. 
Measurements were made both with y-ray attenuation and with the help of 
electrodes, as described in $6. We shall use here a-profiles obtained with electrodes. 

In figure 9 some examples are given of recordings of a when a voidage wave passes 
an electrode. The representation is in terms of time, which can easily be converted 
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L a ,  

FIGURE 9. A recording of the concentration a in the transition a,+a,: (a)  a2 = 4.9%, 
a,=O%; ( b ) ~ , = 1 5 . 1 % , ~ , = 9 . 9 % ;  (c)u,= 1 5 . 5 % , ~ , = 5 . 5 % .  

to distance by using the velocity Us of the wave. The value of Us was always 
measured from two recordings a distance of 20cm from each other. With the 
electrodes the recording of a concentration profile is available in the form of 2000 
points, reaching from a1 to a2. However, many of these are in the outer regions and 
the number in the range where a changes rapidly is much smaller, about 200. With 
y-ray attenuation there are less points in total and the number in the region of rapid 
change is even smaller, about 10. Because of this, we deal in the present study only 
with the measurements made with electrodes. Recordings of the type given in figure 
9 were used to compare the measured concentration profile to the one predicted by 
(5.29) and (5.32). First, the shape of the transition was compared. For given values 
of al, a2, h a,nd V ,  values of z,, and q were determined in such a way that (5.29) fits 
as well as possible to the experimentally obtained recordings of a. It turned out that 
the shape of the a-curves obtained fits (5.29) very well. In all cases zo and q values 
are obtained such that the mean square difference between a as given by (5.29) and 
measured values of a is less than 3 x Since a is of order of 10% in our 
experiments this means that, with particular values of z,, and q for each curve, the 
relative difference between the actual data and the prediction by (5.29) is of order of 
1 YO. Next we compared the value of q, obtained as described above and denoted qexp, 
with the theoretical value for q, qth, given in (5.27). Together with az, al, Us and qexp, 
this is given in table 1 for a number of experiments. 

The computation of qexp from the experimental data, in the way we have just 
described, was done numerically. In order to have confidence in the numerical 
programme, an estimate for qexp was obtained in another way. From the experimental 
data a thickness d of the transition was defined as the distance between points where 
a reaches a, +0.05(a2 -al) and a,-0.05(a2 --al), respectively. Since the middle part 
of the wave where the asymptotic expressions (5.30) and (5.31) are invalid is very 
short the thickness can be estimated with help of (5.32). In  view of the chosen values 
we took the multiplicative factor preceding the expression at the right-hand side of 
(5.32) equal to 3 since e-3 = 0.05. Subsequently from 

and using (5.28), an estimate for qexp, denoted qLxp, was obtained. It appears that qexp 
and qLxp are close in most cases. In figure 10 the ratio qexp/qth is plotted against the 
mean concentration $(al+az). From this representation as well as from the data 
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a2 

0.179 
0.177 
0.155 
0.153 
0.151 
0.126 
0.126 
0.125 
0.100 
0.099 
0.097 
0.088 
0.085 
0.077 
0.073 
0.065 
0.064 

0.077 
0.101 
0.055 
0.079 
0.099 
0.052 
0.026 
0.073 
0.025 
0.059 
0.047 
0.046 
0.043 
0.035 
0.021 
0.034 
0.023 

u, ( 4 s )  Qexp 

exp theory 

0.1 12 0.121 0.068 
0.103 0.112 0.029 
0.128 0.140 0.110 
0.118 0.131 0.051 
0.122 0.124 0.040 
0.137 0.152 0.108 
0.151 0.162 0.188 
0.129 0.144 0.074 
0.162 0.173 0.200 
0.143 0.160 0.059 
0.149 0.166 0.093 
0.153 0.170 0.076 
0.160 0.172 0.086 
0.164 0.178 0.107 
0.176 0.186 0.192 
0.168 0.183 0.106 
0.177 0.188 0.155 

TABLE 1 

0.065 
0.013 
0.115 
0.032 
0.034 
0.111 
0.185 
0.064 
0.184 
0.043 
0.071 
0.041 
0.065 
0.116 
0.171 
0.055 
0.130 

~ 

%eXP 

(m"s) 

0.0010 
0.0004 
0.0016 
0.0007 
0.0006 
0.0016 
0.0027 
0.001 1 
0.0029 
0.0008 
0.0013 
0.001 1 
0.0012 
0.0015 
0.0027 
0.0015 
0.0022 

qth 

0.246 
0.257 
0.223 
0.234 
0.243 
0.207 
0.194 
0.2 17 
0.181 
0.197 
0.190 
0.185 
0.182 
0.174 
0.165 
0.168 
0.161 

1.5 

1.0 

0 0 0  
A 

A 

- 
d A 

0 
A 'A 

0 
0 A A  

0 
A 

' 0  A 
A 

a 
A 

A 

I t ,  I , I I  ! , I  

0 0.05 0.10 
(a ,  fa,) 

FIGURE 10. The relation between measured and calculated values of q.  The points A are qexp in 
table I. The points 0 are qLxp, neglecting a* terms in (5.32). 

given in table 1 it can be seen that there is agreement as far as order of magnitude 
is concerned. Both qexp and qth are of order lo-' and the corresponding diffusion 
coefficient 9 is of order lop3 m2/s. Inspection shows that the agreement is less with 
higher mean concentrations than with the lower ones. Because the theoretical 
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considerations are partly based on explicit results for pairs, the terms in a2 are 
probably not accurate. We therefore made a second comparison of qth with a value 
of q&, obtained by omitting in (7.6) the terms quadratic in a1 and a2, that is 

359a2+a1 
hl' a2 - a1 ' 

d = -  (7.7) 

These are almost the same as follow from (5.29) upon omitting the terms quadratic 
in a. We see that the agreement is appreciably improved. It should be observed that 
a t  higher concentrations other effects than those considered here may be important. 
For example, Biesheuvel & Gorissen (1989) allow viscous resistance to depend on 
aalaz as well as on a. At low concentrations, as considered here, we think that fluid 
inertia is a major effect. The experiments show that the effective gradient diffusion 
predicted here is of the right order of magnitude and even fairly accurate a t  low 
concentrations. 

8. Conclusion 
In this paper the role of fluid inertia in the dynamics of voidage waves in bubbly 

flows is considered. While a decrease with concentration of the rise velocity of a 
homogeneous mixture promotes the steepening of such a wave, the increase of fluid 
impulse can balance this provided, roughly speaking, that the added-mass force on 
a bubble increases with concentration more than the viscous resistance does. For 
sufficiently slow gradients of a the transition profile in voidage waves can be 
predicted solely from data on the uniform velocity of rise. Experiments show that 
there is order-of-magnitude agreement with such predictions for all experiments done 
by us and numerical agreement up to concentrations of about 8%. 

With great pleasure we dedicate this paper to George Batchelor on the occasion of 
his 70th birthday. His work has been for almost half a century a source of inspiration 
for workers in fluid mechanics, especially over the last decades for those engaged in 
research in heterogeneous media. One of us (L. v. W.) adds to this his appreciation 
and gratitude for a longstanding friendship and cooperation. 

The authors thank A. Biesheuvel and W. C. M. Gorissen for fruitful discussions 
and help during the preparation of this paper. Thanks are due to the referees for their 
useful comments and criticisms. This research was supported by Fundamenteel 
Onderzoek der Matcric (FOM) under contract no. 280213. 

Appendix A 
Consider two oblate spheroids with their line of centres normal to the parallel short 

axes (see figure 11). With velocity i in the direction of el, let the dipole strength be 
PiV for each of the spheroids in the absence of the other. Spheroid 2 will, when they 
form a pair, induce in the centre of spheroid 1 a velocity uind. Then, in an 
approximation accurate to ( u / R ) ~ ,  where a is the effective radius of a spheroid and 
2R the distance separating the centres, the dipole strength is p, i V (  1 - uind/i). This 
dipole in turn induces in the centre of spheroid 2 a velocity 

2x 
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2R I 
FIGURE 11. Two oblate spheroids with effective radius a and separated by a distance 2R. 

which is, by symmetry, just equal to uind, whence 

From (3.5) and the discussion following (3.12) in $3  on the relation between drag 
force and dissipation, we have 

(Fse,). el = -2uind/k = -4/4Y/(2R)3, 

h = M . ( / + f ) - x ,  

(A 3) 

where the second equality has been obtained with use of (A2) .  Writing for the 
impulse h 

(3.7) gives for the aligned case 

M,, k{ 1 + (L  * el) - el} = 4npl Y p l  k( 1 - uind/k) -pd V k .  

Using (A 2) for uin,Jk gives 

Mll{l + (f -el) -el} = 4np1 p1 Y (  1 - 2p, Y / ( 2 R ) ' )  -pl Y .  (A 4) 

Letting R become infinite gives 

Ml1 = 4npA-Y- - P( Y .  

Using this in (A 4) gives, together with (A 3), 

(L.e,)-e,  = - 1 +- ( f . e , ) . e , .  ;( %:) 
This result is mentioned in the main text. In the case of motion in the e, direction 
a similar result is found. The relation (A 1) becomes 

and M,, must be used instead of Mll. As observed in the main text M,, is given by 
(2.8) while M I ,  is given in Lamb (1932, $373). 
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Appendix B 

concentration daldx = A a  S(x) with 
In $6 it was reported that the electrodes respond to a stepwise variation of the 

a, = $Act{ 1 + tanh sx}, s = 115 m-l. 

We now investigate the response to a wave-like change 

- AAa A < s .  - da 
dx - 2 cosh2 Ax ' 

This gives for the signal a., of the electrodes 

dP}. 
tanh Ax - tanh Ap/s  W 

= &Aa{ 1 +;J 
--m cosh2p( 1 - tanh Ax tanh hpls) 

For values of x such that tanh Ax - 1, the integral equals 2, so that the width of the 
wave is not affected. For values of x for which ltanhhxl < 1, we write 

aAatanhAx tanh Ap/s 
dp cosh2Ax s --co cosh2p( 1 - tanh Ax tanh hpls) 

a, = +Aa( 1 + tanh Ax) - 

1 (tanh 'pis)' dp}] 
2 cosh2 Ax I-.W cosh2 p 

The integral is of order (hls)' for small A / s  and has the value f for h = s, so that a 

[ { 3cosh2Ax 

good estimatc is 
a, z +Act l t t a n h h x  1 - 

With A / s  < 0.5, this means a maximum relative error (near x = 0) of about 8%. 
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